If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-10X+1.6=0
a = 1; b = -10; c = +1.6;
Δ = b2-4ac
Δ = -102-4·1·1.6
Δ = 93.6
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-\sqrt{93.6}}{2*1}=\frac{10-\sqrt{93.6}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+\sqrt{93.6}}{2*1}=\frac{10+\sqrt{93.6}}{2} $
| 7b+8=5b+10 | | 15w+15=−65w+13 | | 7h-22=-5 | | x+0.08(x)=135000 | | 22-7h=-5 | | 2x+28=100-x/2 | | 9x^2-72x-36=0 | | 3x+20=6x+20 | | x/x-9=-5/4 | | 20x+5=10(x+3)+10x | | 30-5(7x-8)+3x=1(-4x-12)5-12x | | 5x-(3x-5)=19 | | 43-4.9x^2=0 | | 4x-44/3=2x | | x+6=-2x+18 | | x+11=4x+38 | | 5x+11=x+27 | | 12=11x-9x | | −8y−14=2(−4y−7) | | 0.5^x=8/13 | | 4x+16=x+43 | | X+(x+2)+2x+8x=122 | | 6x+7=-3+4x+24 | | x+x+0.5x+0.5x=360 | | 1/4x+1/5=-2 | | 5x+15=x+31 | | 1/5x+1/4=-2(2/3x-4) | | J3x+9=9 | | x+1=-3x-19 | | x+10=4x-4 | | a+3a=124 | | 20=7x-9-8x |